Russian researchers believe hydrocarbons only take decades to form

Aug 08, 2006 02:00 AM

A group of Russian scientists at the oil and gas research institute of the Russian Academy of Sciences, led by Azary Barenbaum, have come up with a new explanation of the nature of oil and gas formation.
They argue that huge reserves of hydrocarbons may take only decades to be formed, not millions of years, as earlier believed. The new theory was published this month in the leading Russian scientific magazine Nauka I Zhizn (Science and Life).

Researchers have registered an increase in oil reserves in oil-rich provinces where deposits were explored and have been developed for many years and where oil consumption is comparatively high. Those oil-rich areas include the Russian province of Tatarstan, Ukraine, Azerbaijan, Texas and Oklahoma in the US, and Mexico.
Depletion of reserves is possible only in the oil and gas exploration areas where consumption levels are low, holds Professor Barenbaum. He insists that formation of oil and gas is not so geological as climatic by nature, related to the water cycle and circulation of carbon on our planet.

The decisive role in that process belongs to carbon infiltrating the earth’s surface with rains in the course of their incessant circulation. Carbons entering the surface -- chiefly in the form of hydrogen carbonate -- along with rain waters transform into hydrocarbons, which create the basis for accumulation of oil and gas in geologic traps.
Conclusions drawn by the specialists of the oil and gas research institute have been confirmed in the course of exploratory drilling in the Moscow Region. The researchers have concluded that up to 90 % of all oil and gas reserves on the planet are formed at the depth of 1 to 10 km and only 10 % are formed out of organic waste. Hence, the entire process of formation takes decades, not millions of years, Russian scientists say.

This is not the first time the scientists have challenged the traditional theory of oil and gas formation, which says that oil and gas deposits are the remains of plant and animal life that died millions of years ago and were compressed by heat and pressure over millions of years. Back in the 1950s Russian and Ukrainian geologists came up with a theory that formation of oil deposits requires the high pressures only found in the deep mantle and that the hydrocarbon contents in sediments do not exhibit sufficient organic material to supply the enormous amounts of petroleum found in supergiant oil fields.
According to their theory oil is not a fossil fuel at all, but was formed deep in the Earth’s crust from inorganic materials. Based on the theory, successful exploratory drilling has been undertaken in the Caspian Sea region, Western Siberia, and the Dneiper-Donets Basin.

The abyssal, abiotic theory of oil formation has received more attention in the West recently because of the work of retired Cornell astronomy professor Thomas Gold, who is known for the development of several theories that were initially dismissed, but eventually proven true, including the existence of neutron stars, the Environmental Literacy Council reported. (The ELC is a US-based independent, non-profit organization, that focuses on environmental literacy, helping young people to develop a fundamental understanding of the systems of the world, both living and non-living, along with the analytical skills needed to weigh scientific evidence and policy choices).
However, Gold has also been wrong. He was a proponent of the “steady state” theory of the universe, which has since been discarded for the “Big Bang” theory.

Gold’s theory of oil formation, which he expounded in a book entitled “The Deep Hot Biosphere”, is that hydrogen and carbon, under high temperatures and pressures found in the mantle during the formation of the Earth, form hydrocarbon molecules which have gradually leaked up to the surface through cracks in rocks.
The organic materials which are found in petroleum deposits are easily explained by the metabolism of bacteria which have been found in extreme environments similar to the Earth’smantle. These hyperthermophiles, or bacteria which thrive in extreme environments, have been found in hydrothermal vents, at the bottom of volcanoes, and in places where scientists formerly believed life was not possible. Gold argues that the mantle contains vast numbers of these bacteria.

The abiogenic origin of petroleum deposits would explain some phenomena that are not currently understood, such as why petroleum deposits almost always contain biologically inert helium. Based on his theory, Gold persuaded the Swedish State Power Board to drill for oil in a rock that had been fractured by an ancient meteorite.
It was a good test of his theory because the rock was not sedimentary and would not contain remains of plant or marine life. The drilling was successful, although not enough oil was found to make the field commercially viable. The abiotic theory, if true, could affect estimates of how much oil remains in the Earth’s crust.

The abiogenic origin theory of oil formation is rejected by most geologists who argue that the composition of hydrocarbons found in commercial oil fields have a low content of 13C isotopes, similar to that found in marine and terrestrial plants; whereas hydrocarbons from abiotic origins such as methane have a higher content of 13C isotopes.
In an April 2002 letter published in the science journal Nature, Barbara Sherwood Lollar and her colleagues from the Stable Isotope Lab at the University of Toronto reported their analysis of the Kidd Creek mine in Ontario.

An unusual ratio of 13C isotopes and the presence of helium provided evidence of hydrocarbons with abiotic origins, but they argued that commercial gas reservoirs do not contain large amounts of hydrocarbons with a similar signature.
Gold and other geologists who argue that there are significant amounts of oil from abiotic origins maintain that as oil seeps up through the layers of Earth closer to the surface, it mixes with oil from biological origins, and takes on its characteristics.

Source: MosNews
Market Research

The International Affairs Institute (IAI) and OCP Policy Center recently launched a new book: The Future of Natural Gas. Markets and Geopolitics.


The book is an in-depth analysis of some of the fastest moving gas markets, attempting to define the trends of a resource that will have a decisive role in shaping the global economy and modelling the geopolitical dynamics in the next decades.

Some of the top scholars in the energy sector have contributed to this volume such as Gonzalo Escribano, Director Energy and Climate Change Programme, Elcano Royal Institute, Madrid, Coby van der Linde, Director Clingendael International Energy Programme, The Hague and Houda Ben Jannet Allal, General Director Observatoire Méditerranéen de l’Energie (OME), Paris.

For only €32.50 you have your own copy of The Future of Natural Gas. Markets and Geopolitics. Click here to order now!


Upcoming Conferences
« April 2018 »
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29

Register to announce Your Event

View All Events